Grade 6 Gifted Day 3 | Standards | 8.EEI.4 Apply the concepts of decimal and scientific notation to solve real-world and mathematical problems. | | |------------------------|---|--| | | a. Multiply and divide numbers expressed in both decimal and scientific notation. | | | Learning Targets | I can multiply and divide numbers in decimal and scientific notation. | | | I Can Statements | | | | Essential Question(s) | How can I apply scientific notation in the world around me? | | | Resources | No additional resources needed. However, all answers should be written on a separate sheet of paper. | | | Learning Activities or | Complete at least 3 topics of your ALEKS pathway. (if available) | | | Experiences | Review attached notes and complete the practice problems. Complete the "Today's Thought" activity. | | **NOTE:** For additional practice aligned to your grade for SC READY review please refer to the 6^{th} grade level assignments. ## Lesson Notes This mini lesson will allow you to apply those concepts learned with "Laws of Exponents." Review the examples below. Your final answer should always be in scientific notation. A number is written in scientific notation when the coefficient number is between 1 and 10 and it is multiplied by a power of 10. Identify from the list below which numbers are in scientific notation. a. $$3.2 \times 10^{-3}$$ b. $$11.3 \times 10^2$$ c. $$0.33 \times 10^{-5}$$ d. $$7 \times 10^{0}$$ ## Today's Thought - 1. Which equation is true? - a. $(6 \times 10^2) \cdot (1.5 \times 10^{-4}) = 9 \times 10^{-8}$ - b. $(6 \times 10^2) \cdot (1.5 \times 10^{-4}) = 4 \times 10^6$ - c. $(6 \times 10^{-2}) \cdot (1.5 \times 10^{4}) = 9 \times 10^{-8}$ - d. $(6 \times 10^{-2}) \cdot (1.5 \times 10^{4}) = 4 \times 10^{2}$ - 2. Which is equivalent to the product of 6×10^{-9} and 3×10^{7} ? - a. 1.8 x 10⁻¹ - b. 1.8 x 10⁻⁶³ - c. 9×10^{-2} - d. 9 x 10⁻⁶³ - 3. A TV provider had 2.982×10^7 subscribers at the beginning of 2015. At the end of the year, the TV provider had 1.235×10^5 subscribers. *Approximately* how many more subscribers did the TV provider have at the beginning of 2015 than at the end? - a. 2.29 x 10⁰ subscribers - b. 2.29 x 10¹ subscribers - c. 2.29 x 10² subscribers - d. 2.29 x 10³ subscribers - 4. Ivan's work while simplifying (0.00085)(1.2 x 10⁹) is shown. | Step | Work | |--------|---| | Given | (0.00085)(1.2 x 10 ⁹) | | Step 1 | (8.5 x 10 ⁻⁴)(1.2 x 10 ⁹) | | Step 2 | (8.5 x 1.2) x (10 ⁹⁻⁴) | | Step 3 | 10.2 x 10 ⁵ | | Step 4 | 1.02 x 10 ⁴ | In which step is Ivan's work incorrect, and why? - a. In Step 1, 8.5×10^{-4} should be 8.5×10^{4} . - b. In Step 2, 10^{9-4} should be $10^{9(-4)}$. - c. In Step 3, 10.2 should be 9.7. - d. In Step 4, 1.02×10^4 should be 1.02×10^6 - 5. A certain cell is 1.7×10^{-6} meters in diameter. When viewed under a microscope lens, the size of the cell is multiplied by 1,000. The size of the diameter of the cell when viewed under the microscope can be written as 1.7×10^x meters. What is the value of x?