Grade 6 Gifted

Day 3

Standards	8.EEI.4 Apply the concepts of decimal and scientific notation to solve real-world and mathematical problems. a. Multiply and divide numbers expressed in both decimal and scientific notation.
Learning Targets I Can Statements	I can multiply and divide numbers in decimal and scientific notation.
Essential Question(s)	How can I apply scientific notation in the world around me?
Resources	No additional resources needed. However, all answers should be written on a separate sheet of paper.
Learning Activities or	1. Complete at least 3 topics of your ALEKS pathway. (if available) Experiences

NOTE: For additional practice aligned to your grade for SC READY review please refer to the $6^{\text {th }}$ grade level assignments.

This mini lesson will allow you to apply those concepts learned with "Laws of Exponents." Review the examples below.

Multiplying in Scientific
Notation

- Multiply the coefficients
- Use properties of exponents to multiply the power of 10
- Simplify

ค号

Dividing in Scientific Notation

- Divide the coefficients
- Use properties of exponents to divide the power of 10
- Simplify
 zesonber your gmeteermat is

5×10^{2}

Your final answer should always be in scientific notation. A number is written in scientific notation when the coefficient number is between 1 and 10 and it is multiplied by a power of 10. Identify from the list below which numbers are in scientific notation.
a. 3.2×10^{-3}
b. 11.3×10^{2}
c. 0.33×10^{-5}
d. 7×10^{0}

Today's Thought

1. Which equation is true?
a. $\left(6 \times 10^{2}\right) \cdot\left(1.5 \times 10^{-4}\right)=9 \times 10^{-8}$
b. $\left(6 \times 10^{2}\right) \cdot\left(1.5 \times 10^{-4}\right)=4 \times 10^{6}$
c. $\left(6 \times 10^{-2}\right) \cdot\left(1.5 \times 10^{4}\right)=9 \times 10^{-8}$
d. $\left(6 \times 10^{-2}\right) \cdot\left(1.5 \times 10^{4}\right)=4 \times 10^{2}$
2. Which is equivalent to the product of 6×10^{-9} and 3×10^{7} ?
a. 1.8×10^{-1}
b. 1.8×10^{-63}
c. 9×10^{-2}
d. 9×10^{-63}
3. A TV provider had 2.982×10^{7} subscribers at the beginning of 2015. At the end of the year, the TV provider had 1.235×10^{5} subscribers. Approximately how many more subscribers did the TV provider have at the beginning of 2015 than at the end?
a. 2.29×10^{0} subscribers
b. 2.29×10^{1} subscribers
c. 2.29×10^{2} subscribers
d. 2.29×10^{3} subscribers
4. Ivan's work while simplifying $(0.00085)\left(1.2 \times 10^{9}\right)$ is shown.

Step	Work
Given	$(0.00085)\left(1.2 \times 10^{9}\right)$
Step 1	$\left(8.5 \times 10^{-4}\right)\left(1.2 \times 10^{9}\right)$
Step 2	$(8.5 \times 1.2) \times\left(10^{9-4}\right)$
Step 3	10.2×10^{5}
Step 4	1.02×10^{4}

In which step is Ivan's work incorrect, and why?
a. In Step 1, 8.5×10^{-4} should be 8.5×10^{4}.
b. In Step $2,10^{9-4}$ should be $10^{9(-4)}$.
c. In Step 3, 10.2 should be 9.7.
d. In Step 4, 1.02×10^{4} should be 1.02×10^{6}
5. A certain cell is 1.7×10^{-6} meters in diameter. When viewed under a microscope lens, the size of the cell is multiplied by 1,000 .

The size of the diameter of the cell when viewed under the microscope can be written as 1.7×10^{x} meters. What is the value of x ? \qquad

